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Abstract

The two-fluid and Landau criteria for superfluidity are compared for trapped
Bose gases. While the two-fluid criterion predicts translational superfluidity,
it is suggested, on the basis of the homogeneous Gross–Pitaevski limit,
that a necessary part of Landau’s criterion, adequate for non-translationally
invariant systems, does not hold for trapped Bose gases in the GP limit. As
a consequence, if the compressibility is detected to be very large (infinite by
experimental standards), the two-fluid criterion is seen to be the relevant one in
case the system is a translational superfluid, while the Landau criterion is the
relevant one if translational superfluidity is absent.

PACS numbers: 05.30.Jp, 03.75.Nt, 67.40.−w

The experimental observation of Bose–Einstein condensation (BEC) in a vapour of Rb atoms
at very low temperatures (of the order of 170 × 10−9K) in 1995 [1] challenged theoretical
and mathematical physicists to find an explanation for the phenomenon. Since atom–atom
interactions are weak—the range of interaction was about 10−6 cm, while at the required
densities the interatomic spacing was about 10−4 cm—the gas could be considered to be
almost perfect except for elastic collisions of hard-core type, and a theory was soon developed
in terms of the so-called Gross–Pitaevski (GP) functional or equation [2] which may be derived
in the GP limit, defined by the condition

Na

L
= const, (1)

where a denotes the scattering length, N is the number of particles and V = L3 is the volume
enclosing the system. A mathematical proof of BEC was only achieved in 2002 in a remarkable
paper by Lieb and Seiringer [3].
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Setting μ = h̄2/2m, the Hamiltonian describing the system may be written as

HN = −μ

N∑
i=1

H0i +
∑

1�i<j�N

v(|�xi − �xj |), (2a)

where v is a positive potential satisfying certain regularity conditions, and H0 is the one-particle
Hamiltonian

H0 = � + VT (�x) (2b)

acting on L2(R3, d�x), with � the Laplacian on R
3. Above, H0 describes particles confined

in a trap potential VT (such that VT (�x) → ∞ as |�x| → ∞) (see, e.g., [4]). In this
communication, we address the (not yet entirely clear) issue of superfluidity, most particularly
that of translational superfluidity. In [5], the following criterion was used to prove superfluidity
of these gases. Let E0 denote the ground-state energy of the system in the rest frame and E

′
0

the ground-state energy, measured in the moving frame, when a velocity field �v is imposed.
Then for small �v,

E′
0/N = E0/N +

ρs

2mρ
(�v)2 + O(|�v|)4, (3)

where N is the particle number and m is the mass. The error term must be bounded
independently of N (see [13, p 44]) and ρs and ρ denote, respectively, the density of the
superfluid and the total particle density in the two-fluid picture (we shall call this ‘the two-
fluid criterion’ for brevity). By (4) the free Bose gas in the ground state is a superfluid, with
E0 = 0, ρs = ρ and E

′
0 = 1/2Nm(�v)2 and no error term, while it is not one by the Landau

criterion, and thus the two criteria differ in principle. The free Bose gas is not a physical
system, but now that trapped Bose gases are an experimental reality, the fundamental question
poses itself (a) do both the two-fluid and the Landau criterion predict translational superfluidity
for these systems and (b) if not, which criterion describes the physical property of superfluidity
correctly? In order to address this question we must now turn to a brief analysis of the Landau
criterion.

The original Landau criterion was formulated for homogeneous systems only, for which
momentum is conserved, and elementary excitations ε(�k) for fixed wave-vector �k are defined.
It asserts that for drift velocities �v such that |�v| � vc ≡ inf ε(�k)/k , where k = |�k|, the flow
is a superfluid, i.e., takes place without energy dissipation [8]. For these systems the sound
velocity vs in the medium is defined by

vs = lim
k→0

(∂ε(k)/∂k). (4)

A way to interpret and explain the Landau criterion is to view it as a spectral condition
for a certain approximate Hamiltonian. This spectral aspect has played recently an important
role in the explanation of superconductivity via superfluidity of the Cooper pairs in the BCS–
BEC transition in traps [26]. At first, one might be led to view the Landau condition as a
(ground-state) stability condition for the Galilei-transformed Hamiltonian H�v,N of HN given
by (2a)

H�v,N ≡ HN + �v · �PN � 0 (2c)

(as long as |�v| � vc), where �PN is the momentum operator: i.e., it is the stability (positivity)
of the Hamiltonian as viewed from the reference system attached to the pipe. Unfortunately,
(2c) is not true (see [24], and references given there), which may be interpreted as a sort of
metastability of the Landau state (see also [17]). Equation (2c) is, however, true (for |�v| � vc)
when HN is taken as an approximating Hamiltonian describing a finite number (O(1)) of
noninteracting elementary excitations, of the type of those analysed in [11] of the forthcoming

2



J. Phys. A: Math. Theor. 41 (2008) 392006 Fast Track Communication

model (21) (see also [17), or the Hamiltonian of the weakly interacting Bose gas (WIBG)
introduced in [9],

HB ≡
∑

εka
∗
k ak +

∑ λk

2V
[a∗

0a0(a
∗
k ak + a−ka−k)] +

∑ λk

2V
(a∗

k a
∗
−k(a

∗
0)

2) + h.c., (2d)

where εk denotes the kinetic energy, λk is related to the Fourier transform of the interaction
potential, V is the volume and a are the usual Boson annihilation operators related to a cubic
box with periodic boundary conditions and the sums exclude the point k = 0 [9]. When the
Bogoliubov c-number substitution a0/

√
V = α0 is performed on (2d), HB becomes equivalent

(after a Bogoliubov transformation) to a Hamiltonian of (an infinite number of) independent
elementary excitations, which satisfies (2c) [9]. It should be emphasized that (2d) may be
controlled in several ways, both with and without the c-number substitution [9].

The explanation of the stability (2c) for a Hamiltonian describing independent elementary
excitations is that it describes, of course, the idealized situation in scattering theory, in which
the excitations are infinitely far apart and do not interact. Instabilities may be brought about
by their interaction: this physical picture has been made rigorous for spin-waves in the infinite
Heisenberg ferromagnetic ground state [25]. It would be interesting to extend the latter results
to the Boson gas using the WIBG with the c-number substitution as Hamiltonian of the
noninteracting quasi-particles.

It is easy to see (see also [8]) that a nonzero critical velocity vc implies

vs > 0, (5)

and therefore a nonzero sound velocity is a necessary condition for the validity of
Landau’s criterion. This necessary condition has an analogue for inhomogeneous, i.e., non-
translationally invariant systems such as trapped gases. Let the thermodynamic limit of the
(ground state (gs), i.e., T = 0) compressibility κ0 be defined by

κ0 = lim
V →∞

[
−V −1

(
∂V

∂P

)
T =0,N

]
, (6)

where

P = −(∂E(N,L)/∂V )N,T =0 (7)

is the gs pressure, and E(N,L) denotes the gs energy of HN . For homogeneous systems, and
under quite general conditions on the pair interactions v, it may be proved [6] that the limit in
(5) exists and

κ0 � 0 (8)

and, by a macroscopic argument [7], one expects that vs , given by (4), is alternatively given
by

vs =
[

1

mρ
κ−1

0

]1/2

. (9)

On the other hand, (9) makes sense for general (in particular inhomogeneous) systems such
as (2). Comparing (9) with (4), we are led to adopt as necessary part of Landau’s criterion for
general systems the condition

κ−1
0 > 0. (10)

In order to study (6) for the trapped gases (2) (with T 	= 0), we enclose the system in a large
box and should consider the general limit on the rhs of (6) where N, rather than Na/L, is
fixed, so that we are not allowed to use the results for the GP limit (1), and the problem is
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difficult. One might argue intuitively that the trap potential VT is ‘like a box’, and enclosing
the system in a large box whose volume is varied produces no change: thus P is zero in (7),
and so is the inverse compressibility, yielding zero for the rhs of (10). Thus the necessary
part of Landau’s criterion seems not to hold for trapped gases, but for a somewhat trivial
reason. This is not so, however, because the trap potential is slowly varying, and very different
from the steep ones which resemble a box. In the limit of very slow variation, one has the
homogeneous GP gas which has been thoroughly studied (see [14], chapter 5). The proofs
of Bose–Einstein condensation (BEC) and superfluidity (according to the two-fluid criterion)
in the latter reference have, in fact, been an excellent qualitative guide for the corresponding
behaviour of trapped gases, and for that reason we turn our attention now to the study of (10)
in the homogeneous GP case.

Let N
V

= ρ denote the density. This may be fixed in the homogeneous GP limit but in a
trap the particle density is inhomogeneous. We consider two versions of the GP limit which
have been used: GP1: Na/L and 1/L fixed; GP2: ρ and Na/L fixed.

Above, L and a are to be regarded as adimensional (i.e., divided by a length unit). In the
trapped case, the natural length unit is the ‘trap extension’ Losc, see [14, p 47]. As remarked
in [14, p 40], GP2 may be implemented by replacing the interaction potential v in (2) by

v(x) = a−1v1(|x|/a) (11)

with v1 of unit scattering length, keeping v1 fixed. With this choice a tends to zero as

a = N−2/3ρ−1/3 (12)

since

L =
(

N

ρ

)1/3

(13)

and (1) holds. By scaling, the limit involved in the proof of ODLRO (off-diagonal long-range
order) [22], which implies the existence of BEC in a dilute limit, is equivalent to GP1 ([14],
theorem 5.1, p 40). The same happens with the proof of superfluidity by the two-fluid criterion
(3) (see [14, p 45]). This equivalence does not extend, however, to the proof of (10), as we
shall see.

The gs energy in the thermodynamic limit

e0(ρ) = lim
L→∞

E0(ρL3, L)/(ρL3) (14)

is rigorously given in the dilute limit, namely

ρa3 
 1, (15)

by the seminal result of Lieb and Yngvason [13],

lim
ρa3→0

e0(ρ)

4πμρa
= 1. (16)

The rigorous results referred to above (for a more complete account, see [14]) seem, so far,
to support the assumption that the Bogoliubov expansion (in the forthcoming α ≡ 128

15
√

π
and

β ≡ 8( 4π
3 − √

3))

E0(N,L, a)/N

4πμρa
= 1 + α(Na3/V )1/2 + β(Na3/V ) log(Na3/V ) + o(Na3/V ) (17)

is an asymptotic series in region (15). We refer to [14, p 11] and Lieb’s early review [12] for
details, references and history of (17), but remark that [15] is the simplest, albeit nonrigorous,
approach to the derivation of the first two terms of (17).
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In the following considerations, the scattering length is a fixed number satisfying (17).
In the limit (6) the derivatives with respect to V are taken at fixed N and only thereafter

the thermodynamic limit, hereafter just denoted by ‘lim’, N → ∞, V → ∞ with
N

V
= ρ

performed. We arrive, by (6), (7) and (17), at

κ−1
0 = lim

[
V

∂2E0(N,L)

∂V 2

]
N

= 8πμ(ρ2)a + 15πμα(Na)5/2V −5/2

+ 8πμβ(3N3V −3a4(log(Na3/V ) + 1)) + o(Na3/V 2). (18)

By (18) and (12) we obtain

κ−1
0

κ−1
f

= N−2/3f2(N), (19a)

where

f2(N) = 1 +
15

8
αN−1 + β(4N−2 − 3N−2 log N) + o(N−3). (19b)

Above, κ−1
f = 8πμρ5/3 = h̄2

m
ρ5/3 denotes the compressibility of free fermions in three

dimensions. We assume that f2(N), defined by (19b), is asymptotic of order 2 (in the

parameter N−1) to the function g = N2/3 κ−1
0

κ−1
f

: this is a precise version of our assumption

regarding asymptoticity. This yields by (19a) and (19b),

κ−1
0 = 0 (20)

and thus the special form (10) of Landau’s criterion is not satisfied for any regime of flow
velocities. Thus GP2 implies that the sound velocity is zero by (9). On the other hand, it is
easy to see that (9) and (18) imply that GP1 yields for the sound velocity the value 1/L (up
to a constant factor with the dimension of velocity), i.e., a nonzero value! Both GP1 and GP2
yield a value of the same order for the dilution parameter (15). Taking L = 1, GP1 yields
ρa3 = N × (1/N)3 = N−2 (in the trapped case it is the mean density which enters (15), see
[14, p 49] and by GP2 one finds also ρa3 = ρ(N−2/3)3 = O(N−2). The values for E0/N

are, however, quite different: for GP1 it is a nonzero constant proportional to Na, for GP2 it
is, by (15) and (17), proportional to N−2/3 or V −2/3, which coincides with the behaviour of
the free Bose gas with Dirichlet boundary conditions! This qualitative difference in behaviour
affects the leading term in (17), and therefore the compressibility in (18) but, as we have seen,
this does not matter for the presence or absence of superfluidity by the two-fluid criterion (3),
since the latter holds even if E0 = 0.

For homogeneous systems, we view GP2 as the most natural, fundamental definition, and
GP1 as an equivalent condition for certain quantities. This is also indicated by the fact that
the density ρ has no thermodynamic limit by GP1 and is, in fact, the view adopted in [14], in
which the GP limit is defined by GP2. From this point of view, Landau’s condition should not
be valid for the homogeneous GP case, and, we believe, also not for trapped gases in the GP
limit, because, as argued above, the presence of the trap seems to strengthen the argument in
favour of a zero value for the compressibility.

Condition (10) is, of course, equivalent to finiteness of the gs compressibility and is
violated by the isothermal compressibility of the free Bose gas below the transition temperature
(joining smoothly to T = 0). Clearly, the identity between the two expressions (4) and (9) is
highly nontrivial. To our knowledge, it has been rigorously proved (by E H Lieb [11]) only for
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the model of N particles of mass m in one dimension with repulsive delta function interactions
[10] whose formal Hamiltonian is given by

HN = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ 2c
∑
〈i,j〉

δ(xi − xj ) 0 � xi � L, 1 = 1, . . . , N, (21)

where c > 0, 〈i, j 〉 denote nearest neighbours. We now explain why the compressibility of free
fermions may be expected to appear in (19a). In the limit a → 0 implied by (12), (14) becomes
a hard potential of zero range, just as the limit c → ∞ of (21) (Girardeau’s model [16]). This
seems to be the only model for which both the (double) spectrum of elementary excitations
and the compressibility were obtained rigorously without (as yet) unproved assumptions, the
former in [11]. The forthcoming derivation, which is not explicitly found in the literature
but follows easily from [16], is elementary and provides a transparent physical reason for the
validity of property (10).

In the limit c → ∞ of (21), the boundary condition on the wavefunctions reduces to

ψ(x1, . . . , xN) = 0 if xj = x 1 � j <  � N (22a)

and the (Bose) eigenfunctions satisfying (22a) simplify to

ψB(x1, . . . , xN) = ψF (x1, . . . , xN)A(x1, . . . , xN), (22b)

where ψF is the Fermi wavefunction for the free system of N particles confined to the region
0 � xi < L, i = 1, . . . , N , with periodic boundary conditions: it automatically satisfies (22a)
by the exclusion principle. In (22b),

A(x1, . . . , xN) =
∏
j>

sgn(xj − x) (22c)

from the limit c → ∞ of [10], or [16]. From (22b) and the fact that ψB
0 is non-negative (the

suffix zero referring to the ground state), it follows that ψF
0 has constant sign in the N ! regions

in which configuration space is divided by the surfaces xj = x, and, thus, from (22b),

ψB
0 = ∣∣ψF

0

∣∣. (22d)

Since A2 = 1 by (22c), the correspondence (22b) preserves all scalar products, and therefore
the energy spectrum of the system is the same as of the free Fermi gas, in particular the
ground-state energy equals (for N odd)

E0,N = h̄2

m

1
2 (N−1)∑
p=1

(
2πp

L

)2

(22e)

and ψF
0 is a Slater determinant of plane-wave functions labelled by wave-vectors ki, i =

1, . . . , N , such that

−K(∞) � ki � K(∞) i = 1, . . . , N (23a)

with

K(∞) = 2π

L
· 1

2
(N − 1)  πρ (23b)
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the region (24a) being the ‘Fermi sphere’. A straightforward analysis of the elementary
excitations [11] yields two branches, both corresponding to the same sound velocity by (4),

vs = 2K = πρh̄/m. (24)

The rhs of (9) follows by an elementary calculation: from the formula
N∑

k=1

k2 = 1

6
N(N + 1)(2N + 1)

we obtain from (8), and (22e),

−L
∂p

∂L
= 3

(πh̄N)2

3m
(N − N−1)L−3. (25)

By (26), κ0, given by (6), equals (the limit means N → ∞, with L → ∞ and N/L = ρ)

κ−1
0 = lim

(
−L

∂p

∂L

)
= π2h̄2

m
ρ3 (26)

and thus the rhs of (9) indeed equals the rhs of (4), by (25). Thus in one dimension (26) shows
that the ratio in (19b) equals 1. Although the answer in higher dimensions is not known, it
may be expected to be nonzero. Why does this ratio approach zero in the GP limit? We now
attempt at an explanation, using the comparison with the homogeneous GP limit.

It is the splitting in momentum space (18b), which is responsible for (10) in this model,
with a K(∞) 	= 0, which itself is due to the (non-product) structure of the gs wavefunction
(22b)—which would be identically zero if K(∞) = 0! In contrast, the latter condition is
compatible with a gs wavefunction which is a product of plane waves in the same state (k = 0
for periodic boundary conditions), as for the free Bose gas, leading to infinite compressibility.
In the GP limit, the n-particle density matrices have a product structure [14, p 64], similarly
to the free Bose gas, and quite in contrast to the rich structure of the correlation functions of
the Girardeau model (see [23] for the case of Dirichlet and Neumann b.c.).

In [17] we have formulated an alternate criterion applicable to rotational superfluidity,
which depends on the property of ODLRO: the ‘macroscopic wavefunction’ associated with
the latter property [22] is independent of the azimuthal angle, for a system enclosed in a
rotating cylinder. The corresponding physical property is the ‘London rigidity’, which is
shared by the free Bose gas [18]. In contrast, ODLRO is not required for Landau superfluidity,
and, indeed, is proved to be absent for the Girardeau model in [19]. For dilute trapped Bose
gases London rigidity was rigorously proved in [5], being thus one of the very few results in
mathematical physics which have been verified experimentally ([20], figure 7a, p 48).

Although translational superfluidity of these gases was also rigorously proved in [5] using
the two-fluid criterion, the necessity part of Landau’s criterion (10) predicts otherwise, under
assumptions on the asymptotic character of the Bogoliubov expansion. Thus question (a) posed
in the beginning seems to have a negative answer. Concerning question (b), the issue can thus
only be resolved by experiments, but the latter seem to be, as yet, inconclusive (see [21],
section 4.5, for a recent discussion of this point and references). In particular, if the
compressibility is very large (infinite by experimental standards), the two-fluid criterion is the
relevant one in case the system is a (translational) superfluid, while the Landau criterion is
the relevant one in case no translational superfluidity is found.
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